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a b s t r a c t

Edible oil adulteration is the biggest source of food fraud all over the world. Since characteristic aroma is
an important quality criterion for edible oils, we analyzed volatile organic compounds (VOCs) in four
edible vegetable oils (soybean, peanut, rapeseed, and sunflower seed oils) by headspace comprehensive
two-dimensional gas chromatography time-of-flight mass spectrometry (Headspace–GC�GC-TOFMS) in
this study. After qualitative and quantitative analysis of VOCs, we used unsupervised (PCA) and
supervised (Random forests) multivariate statistical methods to build a classification model for the four
edible oils. The results indicated that the four edible oils had their own characteristic VOCs, which could
be used as markers to completely classify these four edible oils into four groups.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Edible vegetable oils are important to our daily life by providing
energies, nutritional components, and pleasant flavors [1–3].
Soybean, rapeseed, sunflower seed, and peanut oils are major
cooking oils in the world. As the same as olive oil in western
countries, these oils have become a target of adulteration, while oil
adulteration is the biggest source of food fraud [4]. To keep
consumers from adulterated oils, a reliable method for detecting
such adulteration is in great demand. Aroma is an important
quality criterion for edible vegetable oils as a characteristic
parameter [3,5]. Intuitively, edible vegetable oils possess their
respective characteristic aroma. Volatile organic compounds
(VOCs) have low molecular weights (less than 300 Da), produce
an odor sensation, and are easily vaporized at room temperature
[5]. VOCs play a significant role in wine aroma, and the presence/

absence of VOCs in different proportions can be taken as a marker
for identifying adulteration.

Many analytical methods have been proposed to isolate, iden-
tify, and quantify the volatile components that characterize aroma
of oil [5]. Among these techniques, solid-phase micro-extraction
(SPME) is a simple and fast technique for the extraction of volatile
and non-volatile compounds without any solvent preparation
[6–7]. Headspace is a fast, universal, sensitive, solvent-free, and
economical method for isolation of volatile analytes from complex
matrices [8]. Recently, the headspace solid-phase micro-extraction-gas
chromatography (Headspace SPME-GC) method was utilized to deter-
mine solvent residues and aldehydes in edible oils [9–10].

Chemometrics is a multivariate data analysis tool often coupled
with metabolomics and non-destructive testing methods such as
near infrared spectroscopy (NIR). In respect to oil fraud, chemo-
metrics is a powerful tool used qualitatively for classifying
unknown samples with similar characteristics and quantitatively
for determining adulterant analytes in samples [11]. Recent reports
demonstrated that the chemometric methods of principal compo-
nent analysis (PCA), self-organizing maps based on chaotic para-
meters, and cluster discriminant analysis (CDA) were used to
distinguish edible oils from refined recycled cooking oils, identify
edible oils from different regions, and detect adulteration of extra
virgin olive oil with inferior edible oils, respectively [12–14].
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Generally, chemometric data analyses for oil fraud detection are
increasingly and extensively used in routine quality assurance
(QA) testing [12].

The aim of this study is to analyze volatile compounds in four
vegetable oils by headspace comprehensive two-dimensional gas
chromatography time-of-flight mass spectrometry (Headspace
GC�GC–TOF/MS) and to develop a classification and adulteration
identification model for the four vegetable oils. At first, we
developed the Headspace GC�GC–TOF/MS method to analyze
volatile organic components in soybean, peanut, rapeseed, and
sunflower seed oil samples. After qualitative and quantitative
analysis of the volatile components, unsupervised multivariate
statistical methods including the PCA and Hierarchical clustering
analysis (HCA) and the supervised multivariate statistical method
of random forests (RF) were used to build a classification model for
the four edible oils.

2. Materials and methods

2.1. Samples and materials

To ensure that the selected oilseed samples could represent the
actual status of peanut, soybean, rapeseed, and sunflower seed
oils, we collected four types of oilseeds from the main producing
areas of China but not edible oils from supermarkets. In total, 18,
25, 24, and 27 samples of soybeans, peanuts, sunflower seeds, and
rapeseeds were collected for the study, respectively. The detailed
information about these oilseeds is shown in Supplementary
Material Table S1. All the samples were serially numbered and
stored in a room at a constant temperature before extraction.
A quality control (QC) sample was prepared by mixing 2 mL of
each oil sample and used to check the repeatability of experiments
and reliability of analytical results.

TenGuard oil presser, was from Foshan Taidian Intelligent
Technology Co. Ltd., and ultra-pure Milli-Q water was manufac-
tured by Millipore Elix Advantage 5 (Billerica, MA, USA).

2.2. Preparation of oil samples

A moderate quantity of seeds was cleaned, triturated, and
squashed by a grinding mill, and then the fragments were put
into Taigu oil presser. The exudation was collected into the
centrifuge tube and then centrifuged at 4500 rpm in 5 min. The
supernatant liquid was cold drawn into the oil we needed. Each oil
sample was numbered, and the same type of seed, which had been
differently labeled, was numbered in the same manner.

2.3. Chromatographic conditions

The oil extracts and QC sample were analyzed using a LECO
Pegasus 4D GC�GC–TOF/MS instrument (LECO Corporation, St.
Joseph, MI, USA) equipped with Agilent 6890N. A non-polar/mid-
polar column set was optimized for GC�GC separation. The first
dimension (1D) column was 60 m�250 mm�0.1 mm DB-5 MS
(Agilent J&W GC Columns, USA) and the second dimension (2D)
column was 2 m�150 mm�0.15 mm Rxi-17Sil MS (Restek, USA).

The temperatures of the GC inlet and transfer line were set at
200 1C and 225 1C, respectively. High purity helium (99.9995%)
was used as the carrier gas at a constant flow of 1 mL min�1.
Cryogenic modulation was performed with a 4 s modulation
period (PM). A CombiPAL autosampler (CTC Analytics, Zwingen,
Switzerland) was used with an injection volume of 1 mL and split
ratio of 10:1. The incubation temperature was 150 1C, incubation
time was 30 min, agitator speed was 500 rpm, agitator speed
during extraction was 100 rpm, agitator-on time was 5 s, agitator-off

time was 2 s, syringe temperature was 150 1C, syringe flush time
was 30 s, and GC cycle time including the oven cooling time was
55 min.

The oven temperature for the first column was held at 40 1C for
2 min, and then ramped to 200 1C at the rate of 5 1C/min and held
for 1 min. The second oven was operated at 10 1C higher than the
first oven throughout the process. The modulation period was 4 s
with the heat pulse of 1 s.

A Pegasuss IV time-of-flight mass spectrometer (LECO Corp.)
was used as a detector. The detector voltage was set to �1650 V,
and MS was operated in electron impact ionization mode (70 eV).
The acquisition delay was 30 s, and ions were collected in the mass
range of 35–600 amu at an acquisition rate of 100 spectra s�1. The
ion source temperature was 230 1C.

2.4. Data processing

The raw data were pre-processed by the LECO ChromaTOFTM
workstation. The task was selected as below: The baseline was
computed; the peaks were found above the baseline; a library
search was performed on all identified peaks; the area and height
of the peaks were calculated without a calibration. The peaks were
extracted with a signal-to-noise ratio (S/N) of above 10. The
minimum similarity match is 700 before the names are assigned,
and the allowed molecular weights are from 50 to 1000. All the
collected masses were searched for in the selected library. Each
peak was automatically determined using the software after
background correction and resolution. Tentative identification
was conducted by searching the National Institute of Standards
and Technology (NIST) library. Eventually, we obtained a table
containing the information of the peak number, name, similarity,
R.T. (s) and area % of each oil sample.

A Matlab program was used to collect all chemical compounds
with the similarity above 700. The same volatile compound was
selected to match the name of each oil sample in the same class. At
last, we acquired a csv table with oil sample serial numbers in the
first column and chemical compounds in the first row.

2.5. Statistical analysis

Our data matrix includes peak areas of edible VOCs. Before
multivariate analysis, the data matrix was preprocessed by gen-
eralized log2 transformation and Pareto scaling (mean-centered
and divided by the square root of the standard deviation of each
variable). In exploratory data analysis, PCA and HCA were
employed to screen sampling clusters and variable distributions
in the four groups of edible oils. To build a classification model for
the four edible oils, an effective supervised multivariate statistical
method of random forests (RF) was used.

Data were processed on a Pentium 4 personal computer. Data
simulation was implemented for adulterated oils in Matlab 2011a
for windows (The Mathworks, Natick, MA). Data preprocessing
(transformation and scaling), clustering (PCA and HCA), and
classification (RF) were conducted using the metabolomics data
analysis tool MetaboAnalyst 2.0 [15].

3. Results and discussion

3.1. Compositions of volatile components in four kinds of edible oils

Headspace volatiles from the four kinds of edible oils were
analyzed by Headspace GC�GC–TOF/MS. Table 1 lists the volatile
organic components tentatively identified in each oil sample.
A total of 114 VOCs were tentatively identified based on the mass
spectral similarity search, including 83, 64, 74, and 88 VOCs from

W. Hu et al. / Talanta 129 (2014) 629–635630



Table 1
Tentative identification and presence of volatile organic components in four classes of edible oils.

No. Compound CAS no. a Similarity RT1 RT2 Soybean oil Peanut oil Sunflower seed oil Rapeseed oil

1 Formaldehyde, dimethylhydrazone 2035-89-4 805 6.70 1.71 þb þ þ þ
2 Butanal 123-72-8 933 5.77 3.83 þ þ þ þ
3 Hexane 110-54-3 929 5.83 3.61 þ þ þ þ
4 Trichloromethane 67-66-3 979 5.97 3.81 þ þ þ þ
5 Cyclopentane, methyl- 96-37-7 893 6.03 3.66 þ þ þ þ
6 1-Penten-3-ol 616-25-1 918 6.70 1.86 þ þ þ þ
7 Heptane 142-82-5 921 6.83 3.69 þ þ þ þ
8 Furan, 2-ethyl- 3208-16-0 965 6.90 3.92 þ þ þ þ
9 1-Pentanol 71-41-0 920 8.03 0.13 þ þ þ þ
10 Heptane, 2,4-dimethyl- 2213-23-2 930 8.63 3.87 þ þ þ þ
11 Hexanal 66-25-1 903 8.77 0.37 þ þ þ þ
12 Cyclotrisiloxane, hexamethyl- 541-05-9 935 9.17 3.79 þ þ þ þ
13 2-Hexenal 505-57-7 948 10.03 2.5 þ þ þ þ
14 1-Hexanol 111-27-3 925 10.50 0.35 þ þ þ þ
15 Pentanoic acid 109-52-4 865 10.97 1.26 þ þ þ þ
16 2-Heptanone 110-43-0 943 11.03 1.31 þ þ þ þ
17 Heptanal 111-71-7 926 11.37 2.39 þ þ þ þ
18 Trichloroacetic acid, pentyl ester 33972-81-5 808 11.43 1.35 þ þ þ þ
19 Butyrolactone 96-48-0 959 11.90 0.12 þ þ þ þ
20 Dimethyl sulfone 67-71-0 915 12.17 2.64 þ þ þ þ
21 2-Heptenal, (Z)- 57266-86-1 923 12.97 2.67 þ þ þ þ
22 1-Heptanol 111-70-6 935 13.37 1.33 þ þ þ þ
23 1-Octen-3-one 585-25-1 938 13.77 0.56 þ þ þ þ
24 1-Octen-3-ol 3391-86-4 886 13.70 0.46 þ þ þ þ
25 Benzonitrile 100-47-0 919 13.90 1.64 þ þ þ þ
26 2-Octanone 111-13-7 958 13.97 2.53 þ þ þ þ
27 Furan, 2-pentyl- 3777-69-3 895 13.97 2.38 þ þ þ þ
28 Cyclotetrasiloxane, octamethyl- 556-67-2 944 14.23 0.95 þ þ þ þ
29 Octanal 124-13-0 924 14.37 2.51 þ þ þ þ
30 1-Nonen-4-ol 35192-73-5 910 14.50 2.8 þ þ þ þ
31 2(3H)-Furanone, 5-ethyldihydro- 695-06-7 932 15.97 3.96 þ þ þ þ
32 2-Octenal, (E)- 2548-87-0 941 15.97 2.78 þ þ þ þ
33 4-Nonenal, (E)- 2277-16-9 849 17.10 2.66 þ þ þ þ
34 Nonanal 124-19-6 933 17.37 2.6 þ þ þ þ
35 Cyclopentasiloxane, decamethyl- 541-02-6 794 18.83 1.78 þ þ þ þ
36 2,4-Nonadienal, (E,E)- 5910-87-2 957 20.57 1.24 þ þ þ þ
37 Benzothiazole 95-16-9 956 21.03 0.43 þ þ þ þ
38 2-Ethoxyethanol 110-80-5 804 5.23 1.56 þ � þ þ
39 Propanal, 2-methyl- 78-84-2 900 5.63 1.7 þ � þ þ
40 1-Propanol 78-83-1 915 6.03 3.76 þ þ þ �
41 Methacrolein 78-85-3 907 5.63 3.73 þ - þ þ
42 Butanal, 3-methyl- 590-86-3 933 6.30 3.87 þ � þ þ
43 2-Butenal 4170-30-3 971 6.37 0.05 þ þ þ þ
44 Butanal, 2-methyl- 96-17-3 922 6.43 3.88 þ � þ þ
45 1-Butanol 71-36-3 921 6.43 1.8 þ þ þ �
46 Benzene 71-43-2 885 6.37 3.92 þ � þ þ
47 Diethylene glycol 111-46-6 909 5.77 1.58 þ � þ þ
48 2-Penten-1-ol, (E)- 1576-96-1 834 8.10 0.18 þ þ � c þ
49 4-Heptenal, (Z)- 6728-31-0 857 11.23 2.49 þ þ þ �
50 Pyrazine, 2,5-dimethyl- 123-32-0 901 11.63 0.95 þ þ � þ
51 Cyclohexanecarboxaldehyde 2043-61-0 834 11.97 2.76 þ þ þ �
52 2-Heptenal, (E)- 18829-55-5 854 12.63 2.67 þ þ þ �
53 3-Ethylcyclopentanone 10264-55-8 883 12.97 1.18 þ þ þ �
54 Decane 124-18-5 871 17.17 2.04 þ þ þ �
55 2,5-Furandione, 3,4-dimethyl- 766-39-2 920 15.50 3.83 þ þ þ �
56 1-Octanol 111-87-5 919 16.37 2.49 � þ þ þ
57 Phenylethyl Alcohol 60-12-8 945 17.70 3.58 þ þ � þ
58 3-Nonen-2-one 14309-57-0 908 18.43 0.93 þ þ þ �
59 3-Hepten-1-ol 10606-47-0 733 20.77 3.14 þ � þ þ
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Table 1 (continued )

No. Compound CAS no. a Similarity RT1 RT2 Soybean oil Peanut oil Sunflower seed oil Rapeseed oil

60 4-Oxononanal – 912 21.50 1.86 þ þ þ �
61 2-Decenal, (Z)- 2497-25-8 933 21.83 2.9 þ þ þ þ
62 Carbon disulfide 75-15-0 911 5.50 3.68 � � þ þ
63 Cyclohexane 110-82-7 866 6.37 3.75 � � þ þ
64 2-Pentanone 107-87-9 910 6.77 0.01 þ þ � �
65 1-Penten-3-one 1629-58-9 930 6.77 0.03 þ � � þ
66 2,3-Pentanedione 600-14-6 779 6.83 0.26 þ � � þ
67 Propanoic acid 79-09-4 877 6.77 3.87 þ � � þ
68 Furan, 2-propyl- 4229-91-8 953 8.57 0.14 þ � þ �
69 2-Pentenal, (E)- 1576-87-0 920 7.83 2.26 þ � þ þ
70 2-Butenal, 3-methyl- 107-86-8 908 8.43 0.55 � � þ þ
71 Formamide, N,N-dimethyl- 68-12-2 913 8.63 0.95 þ � � þ
72 Pyrazine, methyl- 109-08-0 942 9.37 0.94 þ � � þ
73 Formic acid, pentyl ester 638-49-3 924 9.37 0.34 þ � þ �
74 8-Chloro-1-octanol 23144-52-7 782 9.57 2.23 þ � � þ
75 Furfural 98-01-1 941 9.63 2.92 þ � � þ
76 Cyclopentanone, 2-methyl- 1120-72-5 743 9.70 1.44 þ � þ �
77 2-n-Butyl furan 4466-24-4 878 13.97 2.36 � � þ þ
78 6-Hepten-3-ol 19781-77-2 745 12.77 3.18 þ � � þ
79 Camphene 79-92-5 918 12.77 0.54 � � þ þ
80 5-Hepten-2-one, 6-methyl- 110-93-0 911 13.90 0.72 þ � � þ
81 3-Octanol 589-98-0 948 14.10 2.35 þ þ � �
82 Pyrazine, 2-ethyl-5-methyl- 13360-64-0 908 14.30 2.96 þ � � þ
83 Pyrazine, trimethyl- 68-12-2 913 8.63 0.95 þ � � þ
84 Benzyl Alcohol 100-51-6 906 15.37 3.44 þ � þ �
85 2(5H)-Furanone, 5-ethyl- 2407-43-4 908 15.50 3.94 þ þ � þ
86 n-Caproic acid vinyl ester 3050-69-9 925 16.10 1.1 � þ þ �
87 2,2-Dimethylpropanoic acid, tridec-2-ynyl ester – 778 16.10 3.43 þ � � þ
88 Pyrazine, 3-ethyl-2,5-dimethyl- 13360-65-1 926 16.63 2.97 þ � � þ
89 7-Oxabicyclo[2.2.1]hept-5-en-2-one 95530-78-2 766 16.63 3.35 þ � � þ
90 Furan, 2-butyltetrahydro- 1004-29-1 884 14.10 0.9 � þ þ �
91 Undecane 1120-21-4 952 17.23 0.14 � þ þ �
92 2-Nonenal, (E)- 18829-56-6 906 19.03 0.94 � þ þ �
93 Oxalic acid, allyl octyl ester – 868 20.23 0.77 � þ þ �
94 Glyphosate 1071-83-6 999 4.97 0.96 � þ � �
95 Thiocyanic acid, methyl ester 556-64-9 954 7.17 0.53 � � � þ
96 Ethenamine, N-methylene- 38239-27-9 902 7.30 0.24 � � � þ
97 Disulfide, dimethyl 624-92-0 933 7.63 0.26 � � � þ
98 3-Pentenenitrile 4635-87-4 901 7.97 0.67 � � � þ
99 Propanoic acid, 2-hydroxy-2-methyl- 594-61-6 824 8.83 0.49 � � � þ
100 Cyclopentanol, 2-methyl- 24070-77-7 831 9.77 1.3 � � þ �
101 2-Furanmethanol 98-00-0 950 10.17 0.82 � � � þ
102 5-Cyano-1-pentene 5048-19-1 947 10.30 0.95 � � � þ
103 2(5H)-Furanone 497-23-4 932 12.03 0.18 � � � þ
104 Hexanenitrile, 5-methyl- 19424-34-1 917 12.63 2.79 � � � þ
105 1,5-Hexadien-3-ol 924-41-4 839 5.83 3.78 � � � þ
106 Hexanenitrile 628-73-9 891 10.77 2.71 � � � þ
107 2(3H)-Furanone, dihydro-4-methyl- 1679-49-8 921 13.17 3.9 þ � � -
108 1-Butene, 4-isothiocyanato- 3386-97-8 792 13.83 1.29 � � � þ
109 2,5-Furandione, dihydro-3-methyl- 4100-80-5 834 14.97 3.68 � � � þ
110 4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- 28564-83-2 937 18.57 3.69 � � � þ
111 Benzenepropanenitrile 645-59-0 946 21.43 0.41 � � � þ
112 2-Undecenal 53448-07-0 924 24.57 2.92 � þ � �
113 2-Methoxy-4-vinylphenol 7786-61-0 922 23.37 3.77 � � � þ
114 2-Cyclohexen-1-ol, 1-butyl- 88116-46-5 813 19.37 1.62 � þ � �

a ‘–’ means there is no CAS no. for this compound.
b ‘þ ’ represents this component appear in this edible oil.
c ‘� ’ denotes this component does not appear in this edible oil.

W
.H

u
et

al./
Talanta

129
(2014)

629
–635

632



soybean, peanut, sunflower seed, and rapeseed oils, respectively.
No. 1–37 VOCs are common ones in the four types of edible oils.
From the view of adulteration identification, selective components
are more interesting to us. As shown in Table 1, rapeseed oil has 16
selective volatile compounds, including Thiocyanic acid methyl
ester, N-methylene-ethenamine, Dimethyl disulfide, 3-Pentenenitrile,
2-Hydroxy-2-methyl-propanoic acid, 2-Furanmethanol, 5-Cyano-1-
pentene, 2(5H)-Furanone, 5-Methyl-hexanenitrile, 1,5-Hexadien-3-ol,
Hexanenitrile, 4-Isothiocyanato-1-butene, Dihydro-3-methyl-2,5-fur-
andione, 2,3-Dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one, Ben-
zenepropanenitrile and 2-Methoxy-4- vinylphenol. In contrast, 2-
Methyl-cyclopentanol is the selective component in sunflower seed
oil, while 2-Undecenal, 2-Methoxy-4-vinylphenol, and 1-butyl-2-
Cyclohexen-1-ol are selective components in peanut oil and Dihy-
dro-4-methyl-2(3H)-Furanone is in soybean oil. Though the above
components are tentatively identified by library search, their mass
spectra and retention times could be employed to detect them in
GC–MS data of edible oils. It is well known that selective components
are important to adulteration detection because they could be
employed to test whether an edible oil is adulterated into other oils.
However, some selective components are of low concentrations. For
example, the relative content of 2-Methyl-cyclopentanol, the selec-
tive component in sunflower seed oil, ranges from 0.043% to 1.07% in
sunflower seed oil in this study. If an oil sample is adulterated with a
low content of sunflower oil, it is hard to discover this adulteration by
this selective component. In comparison, the multivariate model is a
more robust method to detect adulteration of edible oils.

3.2. Exploratory data analysis

After determination and quantification of volatile components
in the four edible oils, the data matrix of peak areas was
preprocessed by generalized log2 transformation and Pareto scal-
ing. At first, PCA and HCA were used to screen sample clusters and
variable distributions in the four groups. As seen from the score

plot obtained by PCA in Fig. 1a, four types of edible oils were
clearly classified into four groups. Meanwhile, the four groups
were mainly differentiated from each other in the first principal
component (PC), and the first two PCs of each group showed
narrow ranges, which indicated that the first two PCs (especially
the first PC) contained adequate information for classifying these
types of edible oils.

To investigate variable distributions in the four groups, a heat
map was illustrated for the VOC profiles of the four edible oils. In
the heat map, the similarity measure was Euclidean distance,
while the clustering algorithm was Ward's linkage minimizing the
sum of squares of any two clusters. To clearly demonstrate
important variables, only 25 out of the 115 variables were
employed to build the heat map. As shown in Fig. 1b, the similar
results of cluster analysis were obtained. More importantly, we
could find variable distributions in the four groups from this heat
map, which showed the same variable distributions as in Table 1.

3.3. Classification of four kinds of edible oils by random forests

After exploratory data analysis, we found that the four edible
oils could be clearly classified into four groups. To build a
classification model for the four edible oils, an effective supervised
multivariate statistical method of random forests (RF) was used.
Random forests are a multitude of tree predictors combined in
such a way that each tree depends on the values of a random
vector sampled independently, with the same distributions for
all the trees in the forest [16]. The sample proximity matrix
derived from these training trees is generated to collect similarity
information of the samples for classification. Class prediction
is based on the majority vote of the ensemble. Compared with
other supervised multivariate statistical methods such as partial
least squares-discriminant analysis (PLS-DA) and support vector
machine (SVM), RF is directly available for multi-class classifica-
tion. In this study, the number of classification trees were set to

Fig. 1. (a) Score plot obtained from PCA of data about four kinds of edible oils; (b) heat map of volatile components of four kinds of edible vegetable oils.
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500. During tree construction, one third of the samples were taken
as the test set. The out-of-bag (OOB) data were then used as the
test sample to obtain an unbiased estimate of the classification
error (OOB error). From Fig. 2a, it was found that five errors
decreased to zero after less than 20 trees, and the OOB error
equaled 0 in the final classification model.

Random forests could provide a measure for variable impor-
tance. Fig. 2b illustrates the contribution of variables to classi-
fication. According to the mean decrease, 15 most important
volatile compounds including 2-methyl-Propanal, 3-methyl-Buta-
nal, 2-methyl-Butanal, camphene, 2,5-dimethyl-Pyrazine, 3-Nonen-
2-one, 3-methyl-2-Butenal, Cyclohexane, 2-Pentanone, 2-Hexenal,
(E,E)-2,4-Nonadienal, 3-ethyl-2,5-dimethyl-Pyrazine, 2-n-Butyl furan,
2-Furanmethanol, and N-methylene-Ethenamine were selected for
classifying the four edible oils. This result is the same as the
invariable analysis results. In the future, these important volatile
compounds could be essential markers for edible oils and would
be employed to detect adulteration of edible oils. Especially, the
selective components selected in this study could correctly classify
four edible oils into four groups with the help of random forests.
Moreover, since volatile components are important aroma com-
ponents, these selective volatile components could also be utilized

to research the formation mechanism of the characteristic aromas
and evaluate the quality and grade of edible oils.

4. Conclusion

Adulteration of edible oils is the largest source of food fraud all
over the world. In this study, volatile components in four edible
vegetable oils were analyzed by Headspace GC�GC–TOF/MS and
applied to classifying edible oils with the help of multivariate
statistical methods. The results indicate that each type of edible oil
has its own selective volatile components and the VOC profiles of
the edible oils can completely classify the oils into four groups.
Therefore, the VOCs can be taken as the markers of these four
edible oils. In the future, these important volatile compounds can
be employed to detect adulteration of edible oils.
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